اجازه ویرایش برای همه اعضا

مکانیک سماوی

نویسه گردانی: MKANYK SMAWY
مکانیک سماوی شاخه‌ای از علم ستاره‌شناسی است که به مطالعهٔ اجرام سماوی می‌پردازد. این رشته علمی می کوشد قوانین فیزیک را با رفتار ستاره‌ها و سیارات منطبق کند. در زیرشاخه‌های این رشته به مطالعهٔ مدار قمرهای مصنوعی و یا مدار ماه پرداخته می‌شود.
محتویات [نمایش]
تاریخچه [ویرایش]

مدل تحلیلی مکانیک آسمانی مدرن، بیش از ۳۰۰ سال پیش با Principia نوشته اسحاق نیوتن از سال ۱۶۸۷ آغاز شده است. اما نام «مکانیک سماوی» جدیدتر از آن است. نیوتن نوشت که این زمینه از فیزیک باید «مکانیک منطقی» نامیده شود . اصطلاح «دینامیک» کمی بعد با گوتفرید لایبنیتس به وجود آمد، و بیش از یک قرن بعد از نیوتن، پیر سیمون لاپلاس اصطلاح «مکانیک سماوی» را معرفی کرد. با این وجود، مطالعاتی که در زمینهٔ پرداختن به مسائل سیاره‌ای و موقعیت‌های آنها برای مورخین شناخته شده است، بر می گردد به ۳۰۰۰ سال پیش یا بیشتر، زمان ستاره‌شناسان بابلی.
نویسندگان کلاسیک یونانی به صورت گسترده در مورد حرکات سماوی اندیشه می‌کردند، که این تفکرات به ارائه مدل هندسی حرکت سیارات و ساز و کارهای آنها منجر شد. این مدل، نظریهٔ زمین‌مرکزی بود که حرکات ترکیبی یکنواخت دایره‌واری را توضیح داد که به مرکزیت زمین بودند. شخصیت غیر معمول در میان ستاره‌شناسان یونانی، آریستارکوس ساموس بود که مدل مترقی‌تر خورشیدمرکزی را ارائه داد و در تلاش برای اندازه گیری فاصله زمین از خورشید بود.
تنها حامی شناخته شده آریستارکوس، سلئوکوس، یک ستاره شناس بابلی بود که در مورد اثبات نظریهٔ خورشید مرکزی در قرن دوم قبل از میلاد سخن گفته است. این گفته‌ها ممکن است دربرگیرنده پدیده جزر و مد باشند، چرا که او به درستی نظر میدهد که جزر و مد توسط جاذبه ماه است و اشاره می کند که ارتفاع جزر و مد بستگی به موقعیت ماه نسبت به خورشید دارد.
بطلمیوس [ویرایش]
کلودیوس بطلمیوس یک اخترشناس و طالع‌بین در اوایل امپراتوری روم بود که چندین کتاب در مورد ستاره شناسی نوشت. مهمترین اینها المجسطی بود که برای ۱۴۰۰ سال، مهم‌ترین کتاب برای پیش بینی هندسی نجومی باقی ماند. بطلمیوس بهترین اصول نجومی را از اسلاف یونانی خود، به خصوص هیپارکوس، انتخاب نمود و به نظر می رسد که آنها را به طور مستقیم یا غیر مستقیم با داده ها و پارامترهای به دست آمده از بابل ترکیب کرد. گرچه بطلمیوس تا حد زیادی دقت موقعیت‌های پیش‌بینی شده از سیارات را بهبود داد و اگر چه مدل او بسیار دقیق بود، به آن بیشتر در ساخت سازه هندسی تکیه می‌شود تا انگیزه‌های فیزیکی.
در اوایل قرون وسطی [ویرایش]
ون درواردن مدل‌های سیاره‌ای توسعه یافته توسط آریابهاتا ستاره‌شناس هندی و ابومعشر بلخی، ستاره شناس ایرانی را به مدل خورشید مرکزی تعمیم داد؛ اما این دیدگاه به شدت توسط دیگران مورد مناقشه قرار گرفت. در قرن ۹ میلادی، فیزیکدان و ستاره شناس ایرانی، ابو جعفر محمد بن موسی، فرضیه‌ای را رائه کرد که بر طبق آن اجسام آسمانی و افلاک مشمول همان قوانین فیزیکی هستند که در زمین رخ می‌دهد، بر خلاف پیشینیان که معتقد بود که افلاک آسمانی به قوانین فیزیکی مخصوص به خود را دنبال می‌کنند که متفاوت از قوانین زمینی است.[۱] او همچنین از یک نیروی جاذبه بین اجسام آسمانی سخن گفته است،[۲]
ابن هیثم [ویرایش]
در اوایل قرن ۱۱، ابن هیثم یک نظریه توسعه یافته از مدل زمین‌مرکزی اپی‌سیکلیک بطلمیوس برحسب حوزه های تو در توی آسمانی ارائه داد. او همچنین در فصل ۱۵ تا ۱۶ از کتاب خود «نورشناسی»، کشف کرد که افلاک آسمانی از ماده جامد تشکیل نشده‌اند.[۳]
یوهانس کپلر [ویرایش]
اسحاق نیوتن [ویرایش]
آلبرت اینشتین [ویرایش]
منابع [ویرایش]

↑ Saliba, George (1994a), "Early Arabic Critique of Ptolemaic Cosmology: A Ninth-Century Text on the Motion of the Celestial Spheres", Journal for the History of Astronomy 25: 115–141 [116]
↑ Waheed, K. A. (1978), Islam and The Origins of Modern Science, Islamic Publication Ltd., Lahore, p. 27
↑ Edward Rosen (1985), "The Dissolution of the Solid Celestial Spheres", Journal of the History of Ideas 46 (1), p. 13-31 [19-20, 21].
Wikipedia contributors، "Celestial mechanics،" Wikipedia، The Free Encyclopedia، http://en.wikipedia.org/w/index.php?title=Celestial_mechanics&oldid=398789122 (accessed January ۲۹، ۲۰۱۱).
[نهفتن]
ن • ب • و
ستاره‌شناسی در دوران اسلامی
ستاره‌شناسان
سده ۸ام
احمد نهاوندی فضل پسر نوبخت ابراهیم فزاری و محمد بن ابراهیم فزاری ماشاالله پسر اطهری یعقوب بن طارق
سده ۹ام
ابومعشر بلخی ابوسعید جرجانی ابن کثیر فرغانی ابویوسف کندی ابوعبدالله محمد بن عیسی ماهانی حجاج ابن یوسف پسر مطر حبش حاسب علی پسر عیسای اسطرلابی بنی موسی ابوالعباس ایرانشهری خالد پسر عبدالمالک محمد بن موسی خوارزمی سهل پسر بشر ثابت بن قره
سده ۱۰ام
عبدالرحمان صوفی ابومحمود حامدبن خضر خجندی ابوجعفر خازن خراسانی ابوسهل بیژن کوهی ابوالوفای بوزجانی احمد پسر یوسف بتانی القبیصی ابوالعباس نیریزی ساجانی ابن یونس مصری ابراهیم پسر سنان
سده ۱۱ام
بونصر منصور ابوریحان بیرونی ابن زرقالی ابن هیثم ابن سینا ابن صفار کوشیار گیلانی صاعد اندلسی ابوسعید سجزی
سده ۱۲ام
بطروجی بهاءالدین مروزی خازنی سموال مغربی ابو الصلت انوری ابن کماد جابر پسر افلح خیام شرف‌الدین طوسی
سده ۱۳ام
ابن بناء ابن هائم جمال‌الدین بخاری محیی‌الدین مغربی خواجه نصیر طوسی قطب‌الدین شیرازی شمس‌الدین سمرقندی زکریای قزوینی ابن ابی الشکر مویدالدین اوردی اثیرالدین ابهری محمد پسر ابی بکر فریسی
سده ۱۴ام
ابن شاطر شمس‌الدین خلیلی ابوالعقول
سده ۱۵ام
علی بن محمد سمرقندی(ملا علی قوشچی) بدرالدین عبدالواجد غیاث‌الدین جمشید کاشانی قاضی‌زاده رومی الغ‌بیگ سبط ماردینی شهاب‌الدین پسر مجدی
سده ۱۶ام
مولانا عبدالعلی بیرجندی شیخ بهایی پیری رئیس تقی‌الدین محمد پسر معروف
آثار
عجایب‌المخلوقات نام ستاره‌ها در زبان عربی کتاب منظره‌ها رسائل اخوان الصفا گاه‌شماری هجری قمری نقشه آسمان نزهة المشتاق فی اختراق الآفاق کتاب شفا
زیج: Alfonsine tables سالنما جدول نجومی صورالکواکب کاتالوگ ستاره‌ای Toledan Tables تابع‌های مثلثاتی زیج ایلخانی زیج سلطانی سلم السماء
ابزارها
آلیداد رایانه قیاسی روزنه حلقه‌دار اسطرلاب ساعت فلکی گلوب آسمانی قطب‌نما صفحه جهت‌یاب دیوپترا حلقه استوایی Equatorium گلوب کاغذ میلیمتری ذره‌بین Mural instrument اسطرلاب ناوبری سحابی (ستاره‌شناسی) جهان‌نمای مسطح ربع (ابزار) سدس Shadow square حلقه‌دار ساعت آفتابی تلسکوپ Triquetrum
مفاهیم
Almucantar اوج و حضیض اخترفیزیک انحراف محوری سمت مکانیک سماوی Celestial spheres مدار دایروی فلک تدویر حرکت وضعی زمین خروج از مرکز مداری دایرةالبروج مدار بیضوی اکوانت کهکشان زمین‌مرکزی انرژی پتانسیل گرانش خورشیدمرکزی لختی کیهان‌شناسی اسلامی مهتاب Multiverse دیدگاه مسلمانان درباره ستاره‌بینی انحراف محوری اختلاف منظر حرکت تقدیمی قبله اوقات شرعی وزن مخصوص زمین مدور نور ستاره Sublunary sphere نور سفید خورشید ابرنواختر کرانداری زمانی نوسان حرکت تقدیمی مثلث‌سازی جفت طوسی گیتی
مراکز
دانشگاه الازهر دارالحکمه بیت‌الحکمه ستاره‌شناسی در دوران اسلامی رصدخانه تقی‌الدین استانبول مدرسه (اسلام) رصدخانه مراغه رصدخانه بنیاد پژوهشی رصدخانه الغ‌بیگ مسجد اموی دمشق دانشگاه قرویین
تأثیرپذیرفته
ستاره‌شناسی بابلی ستاره‌شناسی قبطی ستاره‌شناسی یونانی ستاره‌شناسی هندی
تأثیرگذاشته
ستاره‌شناسی بیزانسی ستاره‌ شناسی چینی ستاره‌شناسی اروپایی ستاره‌ شناسی هندی
رده‌ها: مکانیک سماوی ستاره‌ شناسی مکانیک

قس عربی

میکانیکا سماویة هو ذلک الفرع من علوم الفلک الذی یهتم بدراسة حرکة الأجرام السماویة. یقوم هذا المجال بتطبیق مبادئ الفیزیاء، تاریخیاً المیکانیکا الکلاسیکیة، على الأجرام السماویة مثل النجوم والکواکب للحصول على بیانات إمفیرمیریة (یومیة). تعد المیکانیکا المداریة أحد فروعه التی ترکز على مدارات الأقمار الصناعیة. النظریة القمریة هی فرع آخر یهتم بدراسة مدار القمر.

[عدل]تاریخ المیکانیکا السماویة

المیکانیکا السماویة التحلیلیة الحدیثة بدأت قبل أکثر من 300 سنة عندما کتب إسحاق نیوتن کتاباً وصف وفسّر فیه قوانینه فی الجاذبیة فی عما 1687. واسم "المیکانیکا السماویة" أحدث من ذلک. وقد کان یرى نیوتن أنه یجب تسمیة هذا المجال بـ"المیکانیکا المنطقیة". وبعد مرور أکثر من قرن على کتاب نیوتن، ابتکر بییر لابلاس مصطلح "المیکانیکا السماویة". ومع أن المُصطلح قد وُلد حینها فقط، کانت هناک دراسات سابقة حول مشکلة مواقع الکواکب وحرکتها تعود إلى 3,000 سنة أو أکثر، منذ أیام الفلکیین البابلیین.

قام الکتاب الإغریق الکلاسیکیون بمراقبة حرکة الأجرام السماویة، وقاموا بتقدیم العدید من الآلیات الهندسیة لحرکتها. وقد کانت الأرض هی مرکز الکون حسب نماذجهم، بینما تدور حولها جمیع الأجرام الأخرى فی حرکات دائریة منتظمة. وکان أحد الفلکیین الإغریق الاستثنائیین قد وضع نظریة حول أن الأرض والکواکب هی التی تدور حول الشمس، واسمه هو أرسطرخس الساموسی، وقد حاول قیاس بعد الأرض عن الشمس. والمؤیّد المعروف الوحید لأرسطرخس هو الفلکی البابلی "سیلیوقس السلوقی".

هذه بذرة مقالة عن الفیزیاء تحتاج للنمو والتحسین، فساهم فی إثرائها بالمشارکة فی تحریرها.
بوابة الفیزیاء
تصنیفات: میکانیکا سماویة فلک میکانیکا

قس انگلیسی

Celestial mechanics is the branch of astronomy that deals with the motions of celestial objects. The field applies principles of physics, historically classical mechanics, to astronomical objects such as stars and planets to produce ephemeris data. Orbital mechanics (astrodynamics) is a subfield which focuses on the orbits of artificial satellites. Lunar theory is another subfield focusing on the orbit of the Moon.
Contents [show]
[edit]History of celestial mechanics

Modern analytic celestial mechanics started over 300 years ago with Isaac Newton's Principia of 1687. The name "celestial mechanics" is more recent than that. Newton wrote that the field should be called "rational mechanics." The term "dynamics" came in a little later with Gottfried Leibniz, and over a century after Newton, Pierre-Simon Laplace introduced the term "celestial mechanics." Nevertheless, prior studies addressing the problem of planetary positions are known going back perhaps 3,000 or more years, as early as the Babylonian astronomers.
[edit]Ancient Greece
Classical Greek writers speculated widely regarding celestial motions, and presented many geometrical mechanisms to model the motions of the planets. Their models employed combinations of uniform circular motion and were centered on the earth. A related philosophical tradition was concerned with the physical causes of such circular motions. An extraordinary figure among the ancient Greek astronomers is Aristarchus of Samos (310 BCE–c.230 BCE), who suggested a heliocentric model of the universe and attempted to measure Earth's distance from the Sun.
The only known supporter of Aristarchus was Seleucus of Seleucia, a Babylonian astronomer who is said to have proved heliocentrism through reasoning in the 2nd century BCE. This may have involved the phenomenon of tides,[1] which he correctly theorized to be caused by attraction to the Moon and notes that the height of the tides depends on the Moon's position relative to the Sun.[2] Alternatively, he may have determined the constants of a geometric model for the heliocentric theory and developed methods to compute planetary positions using this model, possibly using early trigonometric methods that were available in his time, much like Copernicus.[3]
Also in the second century, the Antikythera mechanism was constructed. This device mechanically computes the positions of celestial bodies "with reference to the observer's position on the surface of the earth."[4]
[edit]Claudius Ptolemy
Claudius Ptolemy (c.120 CE) was an ancient astronomer and astrologer in early Imperial Roman times who wrote several books on astronomy. The most significant of these was the Almagest, which remained the most important book on predictive geometrical astronomy for some 1400 years. Ptolemy selected the best of the astronomical principles of his Greek predecessors, especially Hipparchus, and appears to have combined them either directly or indirectly with data and parameters obtained from the Babylonians. Although Ptolemy relied mainly on the work of Hipparchus, he introduced at least one idea, the equant, which appears to be his own, and which greatly improved the accuracy of the predicted positions of the planets. Although the extremely accurate model in the Almagest relied solely on geometrical constructions, in his Planetary Hypotheses Ptolemy proposed both a physical structure of the universe and causes of the celestial motions.[5]
[edit]Early Middle Ages
B. L. van der Waerden has interpreted the planetary models developed by Aryabhata (476–550 CE), an Indian astronomer,[6][7] and Albumasar (787–886 CE), a Persian astronomer, to be heliocentric models[8] but this view has been strongly disputed by others.[9] In the 9th century CE, the Persian physicist and astronomer, Ja'far Muhammad ibn Mūsā ibn Shākir, hypothesized that the heavenly bodies and celestial spheres are subject to the same laws of physics as Earth, unlike the ancients who believed that the celestial spheres followed their own set of physical laws different from that of Earth.[10]
[edit]Ibn al-Haytham
In the early 11th century CE, Ibn al-Haytham presented a development of Ptolemy's geocentric epicyclic models in terms of nested celestial spheres.[11] In chapters 15–16 of his Book of Optics, he also discovered that the celestial spheres do not consist of solid matter.[12]
[edit]Late Middle Ages
There was much debate on the dynamics of the celestial spheres during the late Middle Ages. Averroes (Ibn Rushd), Ibn Bajjah (Avempace) and Thomas Aquinas developed the theory of inertia in the celestial spheres, while Avicenna (Ibn Sina) and Jean Buridan developed the theory of impetus in the celestial spheres.
In the 14th century, Ibn al-Shatir produced the first model of lunar motion which matched physical observations, and which was later used by Copernicus.[13] In the 13th–15th centuries, Tusi and Ali Kuşçu provided the earliest empirical evidence for the Earth's rotation, using the phenomena of comets to refute Ptolemy's claim that a stationary Earth can be determined through observation. Kuşçu further rejected Aristotelian physics and natural philosophy, allowing astronomy and physics to become empirical and mathematical instead of philosophical. In the early 16th century, the debate on the Earth's motion was continued by Al-Birjandi (d. 1528), who in his analysis of what might occur if the Earth were rotating, develops a hypothesis similar to Galileo Galilei's notion of "circular inertia", which he described in the following observational test:[14][15]
"The small or large rock will fall to the Earth along the path of a line that is perpendicular to the plane (sath) of the horizon; this is witnessed by experience (tajriba). And this perpendicular is away from the tangent point of the Earth’s sphere and the plane of the perceived (hissi) horizon. This point moves with the motion of the Earth and thus there will be no difference in place of fall of the two rocks."
[edit]Johannes Kepler
Johannes Kepler (27 December 1571–15 November 1630) was the first to closely integrate the predictive geometrical astronomy, which had been dominant from Ptolemy to Copernicus, with physical concepts to produce a New Astronomy, Based upon Causes, or Celestial Physics.... His work led to the modern laws of planetary orbits, which he developed using his physical principles and the planetary observations made by Tycho Brahe. Kepler's model greatly improved the accuracy of predictions of planetary motion, years before Isaac Newton developed his law of gravitation.
See Kepler's laws of planetary motion and the Keplerian problem for a detailed treatment of how his laws of planetary motion can be used.
[edit]Isaac Newton
Isaac Newton (4 January 1643–31 March 1727) is credited with introducing the idea that the motion of objects in the heavens, such as planets, the Sun, and the Moon, and the motion of objects on the ground, like cannon balls and falling apples, could be described by the same set of physical laws. In this sense he unified celestial and terrestrial dynamics. Using Newton's law of universal gravitation, proving Kepler's Laws for the case of a circular orbit is simple. Elliptical orbits involve more complex calculations, which Newton included in his Principia.
[edit]Joseph-Louis Lagrange
After Newton, Lagrange (25 January 1736–10 April 1813) attempted to solve the three-body problem, analyzed the stability of planetary orbits, and discovered the existence of the Lagrangian points. Lagrange also reformulated the principles of classical mechanics, emphasizing energy more than force and developing a method to use a single polar coordinate equation to describe any orbit, even those that are parabolic and hyperbolic. This is useful for calculating the behaviour of planets and comets and such. More recently, it has also become useful to calculate spacecraft trajectories.
[edit]Simon Newcomb
Simon Newcomb (12 March 1835–11 July 1909) was a Canadian-American astronomer who revised Peter Andreas Hansen's table of lunar positions. In 1877, assisted by George William Hill, he recalculated all the major astronomical constants. After 1884, he conceived with A. M. W. Downing a plan to resolve much international confusion on the subject. By the time he attended a standardisation conference in Paris, France in May 1886, the international consensus was that all ephemerides should be based on Newcomb's calculations. A further conference as late as 1950 confirmed Newcomb's constants as the international standard.
[edit]Albert Einstein
Albert Einstein (14 March 1879–18 April 1955) explained the anomalous precession of Mercury's perihelion in his 1916 paper The Foundation of the General Theory of Relativity. This led astronomers to recognize that Newtonian mechanics did not provide the highest accuracy. Binary pulsars have been observed, the first in 1974, whose orbits not only require the use of General Relativity for their explanation, but whose evolution proves the existence of gravitational radiation, a discovery that led to the 1993 Nobel Physics Prize.
[edit]Examples of problems


This section does not cite any references or sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2011)
Celestial motion without additional forces such as thrust of a rocket, is governed by gravitational acceleration of masses due to other masses. A simplification is the n-body problem, where the problem assumes some number n of spherically symmetric masses. In that case, the integration of the accelerations can be well approximated by relatively simple summations.
Examples:
4-body problem: spaceflight to Mars (for parts of the flight the influence of one or two bodies is very small, so that there we have a 2- or 3-body problem; see also the patched conic approximation)
3-body problem:
Quasi-satellite
Spaceflight to, and stay at a Lagrangian point
In the case that n=2 (two-body problem), the situation is much simpler than for larger n. Various explicit formulas apply, where in the more general case typically only numerical solutions are possible. It is a useful simplification that is often approximately valid.
Examples:
A binary star, e.g., Alpha Centauri (approx. the same mass)
A binary asteroid, e.g., 90 Antiope (approx. the same mass)
A further simplification is based on the "standard assumptions in astrodynamics", which include that one body, the orbiting body, is much smaller than the other, the central body. This is also often approximately valid.
Examples:
Solar system orbiting the center of the Milky Way
A planet orbiting the Sun
A moon orbiting a planet
A spacecraft orbiting Earth, a moon, or a planet (in the latter cases the approximation only applies after arrival at that orbit)
Either instead of, or on top of the previous simplification, we may assume circular orbits, making distance and orbital speeds, and potential and kinetic energies constant in time. This assumption sacrifices accuracy for simplicity, especially for high eccentricity orbits which are by definition non-circular.
Examples:
The orbit of the dwarf planet Pluto, ecc. = 0.2488
The orbit of Mercury, ecc. = 0.2056
Hohmann transfer orbit
Gemini 11 flight
Suborbital flights
[edit]Perturbation theory

Perturbation theory comprises mathematical methods that are used to find an approximate solution to a problem which cannot be solved exactly. (It is closely related to methods used in numerical analysis, which are ancient.) The earliest use of perturbation theory was to deal with the otherwise unsolveable mathematical problems of celestial mechanics: Newton's solution for the orbit of the Moon, which moves noticeably differently from a simple Keplerian ellipse because of the competing gravitation of the Earth and the Sun.
Perturbation methods start with a simplified form of the original problem, which is carefully chosen to be exactly solvable. In celestial mechanics, this is usually a Keplerian ellipse, which is correct when there are only two gravitating bodies (say, the Earth and the Moon), or a circular orbit, which is only correct in special cases of two-body motion, but is often close enough for practical use. The solved, but simplified problem is then "perturbed" to make its starting conditions closer to the real problem, such as including the gravitational attraction of a third body (the Sun). The slight changes that result, which themselves may have been simplified yet again, are used as corrections. Because of simplifications introduced along every step of the way, the corrections are never perfect, but even one cycle of corrections often provides a remarkably better approximate solution to the real problem.
There is no requirement to stop at only one cycle of corrections. A partially corrected solution can be re-used as the new starting point for yet another cycle of perturbations and corrections. The common difficulty with the method is that usually the corrections progressively make the new solutions very much more complicated, so each cycle is much more difficult to manage than the previous cycle of corrections. Newton is reported to have said, regarding the problem of the Moon's orbit "It causeth my head to ache."[16]
This general procedure – starting with a simplified problem and gradually adding corrections that make the starting point of the corrected problem closer to the real situation – is a widely used mathematical tool in advanced sciences and engineering. It is the natural extension of the "guess, check, and fix" method used anciently with numbers.
[edit]See also

Astronomy portal
Astrometry is a part of astronomy that deals with measuring the positions of stars and other celestial bodies, their distances and movements.
Astrodynamics is the study and creation of orbits, especially those of artificial satellites.
Celestial navigation is a position fixing technique that was the first system devised to help sailors locate themselves on a featureless ocean.
Dynamics of the celestial spheres concerns pre-Newtonian explanations of the causes of the motions of the stars and planets.
Gravitation
Numerical analysis is a branch of mathematics, pioneered by celestial mechanicians, for calculating approximate numerical answers (such as the position of a planet in the sky) which are too difficult to solve down to a general, exact formula.
Creating a numerical model of the solar system was the original goal of celestial mechanics, and has only been imperfectly achieved. It continues to motivate research.
An orbit is the path that an object makes, around another object, whilst under the influence of a source of centripetal force, such as gravity.
Orbital elements are the parameters needed to specify a Newtonian two-body orbit uniquely.
Osculating orbit is the temporary Keplerian orbit about a central body that an object would continue on, if other perturbations were not present.
Retrograde motion
Satellite is an object that orbits another object (known as its primary). The term is often used to describe an artificial satellite (as opposed to natural satellites, or moons). The common noun moon (not capitalized) is used to mean any natural satellite of the other planets.
Tidal force
The Jet Propulsion Laboratory Developmental Ephemeris (JPL DE) is a widely used model of the solar system, which combines celestial mechanics with numerical analysis and astronomical and spacecraft data.
Two solutions, called VSOP82 and VSOP87 are versions one mathematical theory for the orbits and positions of the major planets, which seeks to provide accurate positions over an extended period of time.
Lunar theory attempts to account for the motions of the Moon.
[edit]Notes

^ Lucio Russo, Flussi e riflussi, Feltrinelli, Milano, 2003, ISBN 88-07-10349-4.
^ Bartel Leendert van der Waerden (1987). "The Heliocentric System in Greek, Persian and Hindu Astronomy", Annals of the New York Academy of Sciences 500 (1), 525–545 [527].
^ Bartel Leendert van der Waerden (1987). "The Heliocentric System in Greek, Persian and Hindu Astronomy", Annals of the New York Academy of Sciences 500 (1), 525–545 [527-529].
^ "Does it favor a Heliocentric, or Geocentric Universe?". Antikythera Mechanism Research Project, School of Physics and Astronomy, Cardiff University. 27 July 2007.
^ Liba Chaia Taub, (1993), Ptolemy's Universe: The Natural Philosophical and Ethical Foundations of Ptolemy's Astronomy, Chicago: Open Court, ISBN 0-8126-9229-2, pp. 112-119.
^ B. L. van der Waerden (1970), Das heliozentrische System in der griechischen,persischen und indischen Astronomie, Naturforschenden Gesellschaft in Zürich, Zürich: Kommissionsverlag Leeman AG. (cf. Noel Swerdlow (June 1973), "Review: A Lost Monument of Indian Astronomy", Isis 64 (2), p. 239-243.)
B. L. van der Waerden (1987), "The heliocentric system in Greek, Persian, and Indian astronomy", in "From deferent to equant: a volume of studies in the history of science in the ancient and medieval near east in honor of E. S. Kennedy", New York Academy of Sciences 500, p. 525-546. (cf. Dennis Duke (2005), "The Equant in India: The Mathematical Basis of Ancient Indian Planetary Models", Archive for History of Exact Sciences 59, p. 563–576.).
^ Thurston, Hugh (1994), Early Astronomy, Springer-Verlag, New York. ISBN 0-387-94107-X, p. 188:
"Not only did Aryabhata believe that the earth rotates, but there are glimmerings in his system (and other similar systems) of a possible underlying theory in which the earth (and the planets) orbits the sun, rather than the sun orbiting the earth. The evidence is that the basic planetary periods are relative to the sun."
^ Bartel Leendert van der Waerden (1987). "The Heliocentric System in Greek, Persian and Hindu Astronomy", Annals of the New York Academy of Sciences 500 (1), 525–545 [534-537].
^ Noel Swerdlow (June 1973), "Review: A Lost Monument of Indian Astronomy" [review of B. L. van der Waerden, Das heliozentrische System in der griechischen, persischen und indischen Astronomie], Isis 64 (2), p. 239–243. David Pingree (1973), "The Greek Influence on Early Islamic Mathematical Astronomy", Journal of the American Oriental Society 93 (1), p. 32. Dennis Duke (2005), "The Equant in India: The Mathematical Basis of Ancient Indian Planetary Models", Archive for History of Exact Sciences 59, p. 563–576 [1].
^ Saliba, George (1994a), "Early Arabic Critique of Ptolemaic Cosmology: A Ninth-Century Text on the Motion of the Celestial Spheres", Journal for the History of Astronomy 25: 115–141 [116], Bibcode 1994JHA....25..115S
^ Y. Tzvi Langerman (1990), Ibn al Haytham's On the Configuration of the World, p. 11-25, New York: Garland Publishing.
^ Edward Rosen (1985), "The Dissolution of the Solid Celestial Spheres", Journal of the History of Ideas 46 (1), p. 13-31 [19-20, 21].
^ George Saliba (2007), Lecture at SOAS, London - Part 4/7 and Lecture at SOAS, London - Part 5/7
^ Ragep, F. Jamil (2001a), "Tusi and Copernicus: The Earth's Motion in Context", Science in Context (Cambridge University Press) 14 (1–2): 145–163
^ Ragep, F. Jamil; Al-Qushji, Ali (2001b), "Freeing Astronomy from Philosophy: An Aspect of Islamic Influence on Science", Osiris, 2nd Series 16 (Science in Theistic Contexts: Cognitive Dimensions): 49–64 & 66–71, Bibcode 2001Osir...16...49R, doi:10.1086/649338
^ Cropper, William H. (2004), Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking, Oxford University Press, p. 34, ISBN 978-0-19-517324-6.
[edit]References

Asger Aaboe, Episodes from the Early History of Astronomy, 2001, Springer-Verlag, ISBN 0-387-95136-9
Forest R. Moulton, Introduction to Celestial Mechanics, 1984, Dover, ISBN 0-486-64687-4
John E.Prussing, Bruce A.Conway, Orbital Mechanics, 1993, Oxford Univ.Press
William M. Smart, Celestial Mechanics, 1961, John Wiley. (Hard to find, but a classic)
J. M. A. Danby, Fundamentals of Celestial Mechanics, 1992, Willmann-Bell
Alessandra Celletti, Ettore Perozzi, Celestial Mechanics: The Waltz of the Planets, 2007, Springer-Praxis, ISBN 0-387-30777-X.
Michael Efroimsky. 2005. Gauge Freedom in Orbital Mechanics. Annals of the New York Academy of Sciences, Vol. 1065, pp. 346-374
Alessandra Celletti, Stability and Chaos in Celestial Mechanics. Springer-Praxis 2010, XVI, 264 p., Hardcover ISBN 978-3-540-85145-5
[edit]External links

Calvert, James B. (2003-03-28), Celestial Mechanics, University of Denver, retrieved 2006-08-21
Astronomy of the Earth's Motion in Space, high-school level educational web site by David P. Stern
Research
Marshall Hampton's research page: Central configurations in the n-body problem
Artwork
Celestial Mechanics is a Planetarium Artwork created by D. S. Hessels and G. Dunne
Course notes
Professor Tatum's course notes at the University of Victoria
Associations
Italian Celestial Mechanics and Astrodynamics Association
Simulations
Online Celestial Mechanic Simulation
[hide] v t e
Branches of physics
Core
Divisions
Experimental physics Theoretical physics
Energy and motion
Classical mechanics Lagrangian mechanics Hamiltonian mechanics Continuum mechanics Celestial mechanics Statistical mechanics Thermodynamics Fluid mechanics Quantum mechanics
Waves and fields
Gravitation Electromagnetism Quantum field theory Relativity Special relativity General relativity
Applied
Physical sciences
and mathematics
Accelerator physics Acoustics Astrophysics Heliophysics Nuclear astrophysics Solar physics Space physics Stellar physics Atomic, molecular, and optical physics Chemical physics Computational physics Condensed matter physics Solid-state physics Digital physics Material physics Mathematical physics Nuclear physics Optics Nonlinear optics Quantum optics Particle physics Astroparticle physics Phenomenology Plasma Polymer physics Statistical physics
Biology, geology, economics
Biophysics Biomechanics Medical physics Neurophysics Agrophysics Soil physics Atmospheric physics Econophysics Geophysics Psychophysics
View page ratings
Rate this page
What's this?
Trustworthy
Objective
Complete
Well-written
I am highly knowledgeable about this topic (optional)

Submit ratings
Categories: Celestial mechanics

قس ترکی آذری

Fəza mexanikası (ing. celestial mechanics) — mexanika qanunlarının köməyi ilə göy cismlərinin hərəkətini öyrənən astronomiya sahəsi. Fəza mexanikası Ay və planetlərin fəza koordinatlarını hesablayır, Ay tutulmasının vaxtını və yerini müəyyən edir, Kosmik cisimlərin real hərəkətini dəqiqləşdirir.
Fəza mexanikası Günəş sistemini, planetlərin Günəş ətrafında, peyklərin planetlər ətrafında dövr etməsini öyrənir. Həmçinin bu elmi sahə ilə kometa və kiçik planetlərin hərəkətinin trayektoriyasının hesablanır. Uzaq planetlərin və ulduzların hərəkətini bəzən əsrlərlə müşahidələrdən bilmək olur. Günəş sisteminin cisimlərinin isə hərəkəti gözlə də görünə bilər. Onun örənilməsi İohan Keplerin (1571—1630) və İsaak Nyutonun (1643—1727) əsərlərindəki fəza mexanikası qanunları ilə başladı .
Elm ilə əlaqədar bu məqalə qaralama halındadır. Məqaləni redaktə edərək Vikipediyanı zənginləşdirin. Etdiziniz redaktələri mənbə və istinadlarla əsaslandırmağı unutmayın.

[redaktə]Həmçinin bax

Astronomiya
Mexanika
İohan Kepler

[gizlə]
g • m • r
Mexanikanın bölmələri
Klassik mexanika • Xüsusi nisbilik nəzəriyyəsi • Nəzəri mexanika • Ümumi nisbilik nəzəriyyəsi • Relyavistik mexanika • Kvant mexanikası
Bircins mühit mexanikası Qazodinamika • Hidrodinamika • Hidrostatika
Tətbiqi mexanika Materiallar müqaviməti • İnşaat mexanikası • Fəza mexanikası
Kateqoriyalar: Elm qaralamalarıAstronomiya

قس ترکی استانبولی

Gök mekaniği, gök cisimlerinin hareketlerini inceleyen gökbilim dalı.
Gök cisimleri arasındaki kütleçekim etkileşimlerinin belirlediği ilişkilere, Kepler'in ampirik olarak kurduğu matematiksel model üzerine Newton tarafından geliştirilen ve hareketin temel yasaları adı verilen fizik kurallarının uygulanması temeline dayanır. 20. yüzyılda Einstein'ın görelilik kuramı ile bu kurallar yeniden gözden geçirilmiştir. Böylece, giderek daha duyarlı hale gelen ölçüm yöntemleri ile ortaya çıkan ve klasik gök mekaniği kuramının açıklamakta yetersiz kaldığı sapmalar aydınlatılabilmiştir.

Klasik mekanik ile ilgili bu madde bir taslaktır. Madde içeriğini genişleterek Vikipedi'ye katkıda bulunabilirsiniz.
Kategoriler: Gök mekaniğiKlasik mekanik taslakları
واژه های قبلی و بعدی
واژه های همانند
۱ مورد، زمان جستجو: ۰.۱۷ ثانیه
مکانیک سماوی شاخه‌ای از علم ستاره‌شناسی است که به مطالعهٔ اجرام سماوی می‌پردازد. این رشته علمی می کوشد قوانین فیزیک را با رفتار ستاره‌ها و سیارات منطب...
نظرهای کاربران
نظرات ابراز شده‌ی کاربران، بیانگر عقیده خود آن‌ها است و لزوماً مورد تأیید پارسی ویکی نیست.
برای نظر دادن ابتدا باید به سیستم وارد شوید. برای ورود به سیستم روی کلید زیر کلیک کنید.