اجازه ویرایش برای همه اعضا

مکانیک

نویسه گردانی: MKANYK
مکانیک یکی از شاخه‌های فیزیک است[نیازمند منبع] که به مطالعه حرکات ماده و نیروهایی که باعث آن حرکات می‌شود اقدام می‌کند. دانش مکانیک که بر مبانی متعددی هم‌چون زمان، مکان، نیرو، انرژی، و ماده بنا گردیده است، در مطالعه تمامی شاخه‌ها و شعبه‌های فیزیک، شیمی، زیست شناسی، و مهندسی به کار گرفته می‌شود.
مکانیک مجموعه گسترده‌ای از دانش است که سابقه آن از تاریخ مدون بشری فراتر می‌رود.
در گذشته در منابع فارسی و عربی بخشی از دانش مکانیک را که به ساخت وسائل مکانیکی و قوانین حاکم بر آن‌ها مربوط می‌شد علم الحیل می‌نامیدند. ( علم الحیل = جمع حیله : ترفند وتکنیک بنابراین داریم علم الحیل : دانش تکنیک ها)[نیازمند منبع]
دانش مکانیک به دو زمینه اصلی مکانیک کلاسیک و مکانیک کوانتومی بخش می‌شود.
محتویات [نمایش]
مکانیک کلاسیک [ویرایش]

مقالهٔ اصلی: مکانیک کلاسیک
مکانیک کلاسیک (یا مکانیک نیوتنی) بیان ریاضی حرکت و نیرو در پدیده‌های ماکروسکپی طبیعت است. کارهای دانشمندانی مانند تیکو براهه و کپلر و گالیله و به‌ویژه نیوتن این دانش را برپایه‌های نظری قرارداد. بعدها نیز دانشمندانی مانند، دالامبرت، لاگرانژ، همیلتون و ژاکوبی فرمولبندی‌های جدیدی از این مبحث ارائه دادند.
شاخه‌ها [ویرایش]
مکانیک کلاسیک به شاخه‌های استاتیک و دینامیک تقسیم می‌شود. که استاتیک بررسی نیروهای اجسام ایستاده است و دینامیک که حرکت ذرات را بررسی می‌کند. در حالت کلی حرکت یک ذره از دو دیدگاه مختلف می‌تواند مورد بررسی قرار گیرد به بیان دیگر می‌توان گفت، بطور کلی دینامیک که در آن حرکت اجسام مورد تجزیه و تحلیل قرار می‌گیرد، شامل دو قسمت سینماتیک و سینتیک است. در بخش سینماتیک از علت حرکت بخشی به میان نمی‌آید و حرکت بدون توجه به عامل ایجاد کننده آن بررسی می‌شود و حرکت بحث بیشتر جنبه هندسی دارد. در بخش سینتیک دلایل حرکت اجسام که همان نیروهای وارد بر جسم پویاست، بررسی می‌شود.
مکانیک کوانتومی [ویرایش]

مقالهٔ اصلی: مکانیک کوانتومی
با آن‌که مکانیک کلاسیک توصیف دقیقی از پدیده‌های ماکروسکپی در سرعت‌های بسیار کمتر از سرعت نور به‌دست می‌دهد و در پدیده‌های روزمره وسیله اصلی کار مهندسان و فیزیک‌دانان است، در توضیح پدیده‌های مربوط به سرعت‌های زیاد (نزدیک به سرعت نور) و پدیده‌های میکروسکپی به‌کار نمی‌آید. در قرن بیستم برای رفع این اشکالات رشته مکانیک کوانتومی به‌وجود آمد. پدیده سرعت‌های زیاد را اینشتین با نظریه نسبیت خود توجیه کرد ولی برای حل مشکلات پدیده‌های میکروسکوپی به قوانین و نظریه‌های کاملاً جدیدی احتیاج داریم که در مجموع مکانیک کوانتومی را تشکیل می‌دهند.
جستار وابسته [ویرایش]

مکانیک نیوتنی
مکانیک لاگرانژی
مکانیک همیلتونی
مهندسی مکانیک

منابع

مکانیک طراحی جامدات

منابع

مکانیک سیالات کوروش رونما
در ویکی‌انبار پرونده‌هایی دربارهٔ مکانیک موجود است.
Ya. G. Panovko: Elements of the applied theory of elastic vibration., Nauka, Moskau 1990
Y. C. Fung, "A First Course in CONTINUUM MECHANICS", 2nd edition, Prentice-Hall, Inc. 1977

این یک نوشتار خُرد پیرامون فیزیک است. با گسترش آن به ویکی‌پدیا کمک کنید.
رده: مکانیک

قس عربی

المِیکانِیکا أو عِلْم الحِیَل شعبة من شعب الفیزیاء تدور دراستها حول استقواء الأجسام وإزاحتها بصورة عامة.

محتویات [اعرض]
[عدل]الفروع

میکانیکا کلاسیکیة
میکانیکا نیوتن، یمثل النظریة الأساسیة فی الحرکة (علم الحرکة (کینماتیکا) والقوى — علم التحریک (دینامیکا)
میکانیکا لاغرانجیة، إعادة صوغ نظریات المیکانیکا الکلاسیکیة.
میکانیکا هامیلتونیة، صیاغة نظریة أخرى للمیکانیکا الکلاسیکیة.
میکانیکا نجمیة أو سماویة، حرکة النجوم ومجرات وغیرها.
دینامیکا فلکیة أو مداریة: استکشاف الفضاء بالمرکبات الفضائیة.
میکانیکا الأجسام الصلبة المرونة، خواص الأجسام
علم الصوت فی الأصلاب والسوائل.
علم السکون — إستاتیکا الأجسام المتوازنة.
میکانیکا السوائل وحرکتها.
میکانیکا التربة: دراسة التربة والأرض.
میکانیکا الاتصال: میکانیک المواد المتصلة من أصلاب وسوائل.
الهیدرولیکا أی توازن السوائل.
بیومیکانیکا
میکانیکا إحصائیة المتعلقة بتجمعات الجسیمات الکبیرة.
النسبیة الخاصة والنسبیة العامة
میکانیکا الکم
فیزیاء الجسیمات: حرکة الجسیم وبنیته وتفاعله
فیزیاء نوویة المخصصة بدراسة للنواة الذریة
فیزیاء المادة المکثفة مثل الغازات والمواد الصلبة السوائل کمومیة
میکانیکا التصدع، وهو فرع من المیکانیکا یهتم بدراسة تشکل التشققات فی المواد.
میکانیکا الموائع
[عدل]المصادر

[عدل]انظر أیضاً

علم الحیل
[عدل]وصلات خارجیة

[]
[]
[أخف]ع · ن · ت
الفروع العامة فی الفیزیاء
عزل الصوت · فیزیاء زراعیة · فیزیاء فلکیة · فیزیاء الغلاف الجوی · فیزیاء ذریة وجزیئیة وبصریة · فیزیاء حیویة · فیزیاء کیمیائیة · فیزیاء المواد المکثفة · دینامیکا (دینامیکا الموائع · دینامیکا حراریة) · فیزیاء اقتصادیة · کهرومغناطیسیة (بصریات · کهرباء · مغناطیسیة) · فیزیاء الأرض · فیزیاء ریاضیة · میکانیکا (میکانیکا کلاسیکیة · میکانیکا الکم · میکانیکا إحصائیة) · فیزیاء طبیة · ماوراء الطبیعة · فیزیاء عصبیة · فیزیاء نوویة · فیزیاء الجسیمات · نظریة الحقل الکمومی · النسبیة (النسبیة الخاصة · النسبیة العامة) · فیزیاء التربة · علم السکون (علم سکون الموائع)
هذه المقالة بذرة تحتاج للنمو والتحسین؛ فساهم فی إثرائها بالمشارکة فی تحریرها.
تصنیف: میکانیکا

قس انگلیسی

Mechanics (Greek Μηχανική) is the branch of science concerned with the behavior of physical bodies when subjected to forces or displacements, and the subsequent effects of the bodies on their environment. The discipline has its roots in several ancient civilizations (see History of classical mechanics and Timeline of classical mechanics). During the early modern period, scientists such as Galileo, Kepler, and especially Newton, laid the foundation for what is now known as classical mechanics. It is a branch of classical physics that deals with the particles that are moving either with less velocity or that are at rest. It can also be defined as a branch of science which deals with the motion and force of the particular object. The system of study of mechanics is shown in the table below:


Branches of mechanics
Contents [show]
[edit]Classical versus quantum

Classical mechanics
History of classical mechanics
Timeline of classical mechanics
Branches[hide]
Statics Dynamics / Kinetics Kinematics Applied mechanics Celestial mechanics Continuum mechanics Statistical mechanics
Formulations[show]
Fundamental concepts[show]
Core topics[show]
Scientists[show]
v t e
Quantum mechanics

Uncertainty principle
Introduction
Glossary · History
Background[show]
Fundamental concepts[show]
Experiments[show]
Formulations[show]
Equations[show]
Interpretations[show]
Advanced topics[show]
Scientists[show]
v t e
The major division of the mechanics discipline separates classical mechanics from quantum mechanics.
Historically, classical mechanics came first, while quantum mechanics is a comparatively recent invention. Classical mechanics originated with Isaac Newton's laws of motion in Principia Mathematica, while quantum mechanics didn't appear until 1900. Both are commonly held to constitute the most certain knowledge that exists about physical nature. Classical mechanics has especially often been viewed as a model for other so-called exact sciences. Essential in this respect is the relentless use of mathematics in theories, as well as the decisive role played by experiment in generating and testing them.
Quantum mechanics is of a wider scope, as it encompasses classical mechanics as a sub-discipline which applies under certain restricted circumstances. According to the correspondence principle, there is no contradiction or conflict between the two subjects, each simply pertains to specific situations. The correspondence principle states that the behavior of systems described by quantum theories reproduces classical physics in the limit of large quantum numbers. Quantum mechanics has superseded classical mechanics at the foundational level and is indispensable for the explanation and prediction of processes at molecular and (sub)atomic level. However, for macroscopic processes classical mechanics is able to solve problems which are unmanageably difficult in quantum mechanics and hence remains useful and well used. Modern descriptions of such behavior begin with a careful definition of such quantities as displacement (distance moved), time, velocity, acceleration, mass, and force. Until about 400 years ago, however, motion was explained from a very different point of view. For example, following the ideas of Greek philosopher and scientist Aristotle, scientists reasoned that a cannonball falls down because its natural position is orthogonal to its vector field; the sun, the moon, and the stars travel in circles around the earth because it is the nature of heavenly objects to travel in perfect circles.
The Italian physicist and astronomer Galileo brought together the ideas of other great thinkers of his time and began to analyze motion in terms of distance traveled from some starting position and the time that it took. He showed that the speed of falling objects increases steadily during the time of their fall. This acceleration is the same for heavy objects as for light ones, provided air friction (air resistance) is discounted. The English mathematician and physicist Isaac Newton improved this analysis by defining force and mass and relating these to acceleration. For objects traveling at speeds close to the speed of light, Newton’s laws were superseded by Albert Einstein’s theory of relativity. For atomic and subatomic particles, Newton’s laws were superseded by quantum theory. For everyday phenomena, however, Newton’s three laws of motion remain the cornerstone of dynamics, which is the study of what causes motion.
[edit]Relativistic versus Newtonian mechanics

In analogy to the distinction between quantum and classical mechanics, Einstein's general and special theories of relativity have expanded the scope of Newton and Galileo's formulation of mechanics. The differences between relativistic and Newtonian mechanics become significant and even dominant as the velocity of a massive body approaches the speed of light. For instance, in Newtonian mechanics, Newton's laws of motion specify that , whereas in Relativistic mechanics and Lorentz transformations, which were first discovered by Hendrik Lorentz, ( is the Lorentz factor, which is almost equal to 1 for low speeds).
[edit]General relativistic versus quantum

Relativistic corrections are also needed for quantum mechanics, although general relativity has not been integrated. The two theories remain incompatible, a hurdle which must be overcome in developing a theory of everything.
[edit]History

Main articles: History of classical mechanics and History of quantum mechanics
[edit]Antiquity
Main article: Aristotelian mechanics
The main theory of mechanics in antiquity was Aristotelian mechanics.[1] A later developer in this tradition was Hipparchus.[2]
[edit]Medieval age
Main article: Theory of impetus


Arabic Machine Manuscript. Unknown date (at a guess: 16th to 19th centuries).
In the Middle Ages, Aristotle's theories were criticized and modified by a number of figures, beginning with John Philoponus in the 6th century. A central problem was that of projectile motion, which was discussed by Hipparchus and Philoponus. This led to the development of the theory of impetus by 14th century French Jean Buridan, which developed into the modern theories of inertia, velocity, acceleration and momentum. This work and others was developed in 14th century England by the Oxford Calculators such as Thomas Bradwardine, who studied and formulated various laws regarding falling bodies.
On the question of a body subject to a constant (uniform) force, the 12th century Jewish-Arab Nathanel (Iraqi, of Baghdad) stated that constant force imparts constant acceleration, while the main properties are uniformly accelerated motion (as of falling bodies) was worked out by the 14th century Oxford Calculators.
[edit]Early modern age
Two central figures in the early modern age are Galileo Galilei and Isaac Newton. Galileo's final statement of his mechanics, particularly of falling bodies, is his Two New Sciences (1638). Newton's 1687 Philosophiæ Naturalis Principia Mathematica provided a detailed mathematical account of mechanics, using the newly developed mathematics of calculus and providing the basis of Newtonian mechanics.[2]
There is some dispute over priority of various ideas: Newton's Principia is certainly the seminal work and has been tremendously influential, despite ultimately being proven wrong by Wagner's theory of tensile bases, and the systematic mathematics therein did not and could not have been stated earlier because calculus had not been developed. However, many of the ideas, particularly as pertain to inertia (impetus) and falling bodies had been developed and stated by earlier researchers, both the then-recent Galileo and the less-known medieval predecessors. Precise credit is at times difficult or contentious because scientific language and standards of proof changed, so whether medieval statements are equivalent to modern statements or sufficient proof, or instead similar to modern statements and hypotheses is often debatable.
[edit]Modern age
Two main modern developments in mechanics are general relativity of Einstein, and quantum mechanics, both developed in the 20th century based in part on earlier 19th century ideas.
[edit]Types of mechanical bodies

Thus the often-used term body needs to stand for a wide assortment of objects, including particles, projectiles, spacecraft, stars, parts of machinery, parts of solids, parts of fluids (gases and liquids), etc.
Other distinctions between the various sub-disciplines of mechanics, concern the nature of the bodies being described. Particles are bodies with little (known) internal structure, treated as mathematical points in classical mechanics. Rigid bodies have size and shape, but retain a simplicity close to that of the particle, adding just a few so-called degrees of freedom, such as orientation in space.
Otherwise, bodies may be semi-rigid, i.e. elastic, or non-rigid, i.e. fluid. These subjects have both classical and quantum divisions of study.
For instance, the motion of a spacecraft, regarding its orbit and attitude (rotation), is described by the relativistic theory of classical mechanics, while the analogous movements of an atomic nucleus are described by quantum mechanics.
[edit]Sub-disciplines in mechanics

The following are two lists of various subjects that are studied in mechanics.
Note that there is also the "theory of fields" which constitutes a separate discipline in physics, formally treated as distinct from mechanics, whether classical fields or quantum fields. But in actual practice, subjects belonging to mechanics and fields are closely interwoven. Thus, for instance, forces that act on particles are frequently derived from fields (electromagnetic or gravitational), and particles generate fields by acting as sources. In fact, in quantum mechanics, particles themselves are fields, as described theoretically by the wave function.
[edit]Classical mechanics


Prof. Walter Lewin explains Newton's law of gravitation in MIT course 8.01[3]
The following are described as forming Classical mechanics:
Newtonian mechanics, the original theory of motion (kinematics) and forces (dynamics)
Hamiltonian mechanics, a theoretical formalism, based on the principle of conservation of energy
Lagrangian mechanics, another theoretical formalism, based on the principle of the least action
Celestial mechanics, the motion of bodies in space: planets, comets, stars, galaxies, etc.
Astrodynamics, spacecraft navigation, etc.
Solid mechanics, elasticity, the properties of deformable bodies.
Fracture mechanics
Acoustics, sound ( = density variation propagation) in solids, fluids and gases.
Statics, semi-rigid bodies in mechanical equilibrium
Fluid mechanics, the motion of fluids
Soil mechanics, mechanical behavior of soils
Continuum mechanics, mechanics of continua (both solid and fluid)
Hydraulics, mechanical properties of liquids
Fluid statics, liquids in equilibrium
Applied mechanics, or Engineering mechanics
Biomechanics, solids, fluids, etc. in biology
Biophysics, physical processes in living organisms
Statistical mechanics, assemblies of particles too large to be described in a deterministic way
Relativistic or Einsteinian mechanics, universal gravitation
[edit]Quantum mechanics
The following are categorized as being part of Quantum mechanics:
Particle physics, the motion, structure, and reactions of particles
Nuclear physics, the motion, structure, and reactions of nuclei
Condensed matter physics, quantum gases, solids, liquids, etc.
Quantum statistical mechanics, large assemblies of particles
[edit]Professional organizations

Applied Mechanics Division, American Society of Mechanical Engineers
Fluid Dynamics Division, American Physical Society
Institution of Mechanical Engineers is the United Kingdom's qualifying body for Mechanical Engineers and has been the home of Mechanical Engineers for over 150 years.
International Union of Theoretical and Applied Mechanics
[edit]See also

Analytical mechanics
Applied mechanics
Dynamics
Engineering
Index of engineering science and mechanics articles
Kinematics
Kinetics
Non-autonomous mechanics
Statics
Wiesen Test of Mechanical Aptitude (WTMA)
[edit]References

^ "A history of mechanics". René Dugas (1988). p.19. ISBN 0-486-65632-2
^ a b "A Tiny Taste of the History of Mechanics". The University of Texas at Austin.
^ Walter Lewin (October 4, 1999) (in English) (ogg). Work, Energy, and Universal Gravitation. MIT Course 8.01: Classical Mechanics, Lecture 11. (videotape). Cambridge, MA USA: MIT OCW. Event occurs at 1:21-10:10. Retrieved December 23, 2010.
[edit]Further reading

Landau, L. D.; Lifshitz, E. M. (1972). Mechanics and Electrodynamics, Vol. 1. Franklin Book Company, Inc. ISBN 0-08-016739-X.
[edit]External links

Look up mechanics in Wiktionary, the free dictionary.
iMechanica: the web of mechanics and mechanicians
Mechanics Blog by a Purdue University Professor
The Mechanics program at Virginia Tech
Physclips: Mechanics with animations and video clips from the University of New South Wales
U.S. National Committee on Theoretical and Applied Mechanics
Interactive learning resources for teaching Mechanics
The Archimedes Project
[hide] v t e
Branches of physics
Core
Divisions
Experimental physics Theoretical physics
Energy and motion
Classical mechanics Lagrangian mechanics Hamiltonian mechanics Continuum mechanics Celestial mechanics Statistical mechanics Thermodynamics Fluid mechanics Quantum mechanics
Waves and fields
Gravitation Electromagnetism Quantum field theory Relativity Special relativity General relativity
Applied
Physical sciences
and mathematics
Accelerator physics Acoustics Astrophysics Heliophysics Nuclear astrophysics Solar physics Space physics Stellar physics Atomic, molecular, and optical physics Chemical physics Computational physics Condensed matter physics Solid-state physics Digital physics Material physics Mathematical physics Nuclear physics Optics Nonlinear optics Quantum optics Particle physics Astroparticle physics Phenomenology Plasma Polymer physics Statistical physics
Biology, geology, economics
Biophysics Biomechanics Medical physics Neurophysics Agrophysics Soil physics Atmospheric physics Econophysics Geophysics Psychophysics
View page ratings
Rate this page
What's this?
Trustworthy
Objective
Complete
Well-written
I am highly knowledgeable about this topic (optional)

Submit ratings
Categories: Greek loanwordsMechanics
واژه های قبلی و بعدی
واژه های همانند
۴ مورد، زمان جستجو: ۰.۲۸ ثانیه
مکانیک . [ م ِ ] (فرانسوی ، اِ) ۞ شاخه ای از علم فیزیک است که خواص اجسام مادی را در برابر اثر نیرو مطالعه می کند. (فرهنگ اصطلاحات علمی ). ع...
مکانیک سماوی شاخه‌ای از علم ستاره‌شناسی است که به مطالعهٔ اجرام سماوی می‌پردازد. این رشته علمی می کوشد قوانین فیزیک را با رفتار ستاره‌ها و سیارات منطب...
مکانیک سماوی شاخه‌ای از علم ستاره‌شناسی است که به مطالعهٔ اجرام سماوی می‌پردازد. این رشته علمی می کوشد قوانین فیزیک را با رفتار ستاره‌ها و سیارات منطب...
دانش مکانیک نزد مسلمانان «علم الحیل» خوانده مى‌شد. علم حیل، دانش یا شناخت ابزارهاى شگردساز در اصطلاح پیشینیان بود که بر اساس آن، معرّف آشنایى با انواع...
نظرهای کاربران
نظرات ابراز شده‌ی کاربران، بیانگر عقیده خود آن‌ها است و لزوماً مورد تأیید پارسی ویکی نیست.
برای نظر دادن ابتدا باید به سیستم وارد شوید. برای ورود به سیستم روی کلید زیر کلیک کنید.